
Algorithm Selection for Preferred
Extensions Enumeration

Federico CERUTTI a,1, Massimiliano GIACOMIN b and Mauro VALLATI c

a Department of Computing Science, King’s College, University of Aberdeen, UK
b Department of Information Engineering, University of Brescia, Italy

c School of Computing and Engineering, University of Huddersfield, UK

Abstract. Enumerating semantics extensions in abstract argumentation is generally
an intractable problem. For preferred semantics four algorithms have been recently
proposed, AspartixM, NAD-Alg, PrefSAT and SCC-P, with significant runtime
variations. This work is a first comprehensive exploration of the graph features
and of their impact on the execution time of state-of-the-art preferred extensions
enumeration algorithms. Following other areas of AI, we exploit empirical perfor-
mance models, predictive models that relate instance features and algorithms per-
formance. The result is an approach able to select the “best” algorithm for any
Dung’s argumentation framework with an accuracy, on the average, of the 80%.
Moreover, we show that an algorithm selection approach based on classification
can select the fastest algorithm in about the double of the number of cases where
the most efficient algorithm outperforms the other ones (SCC-P), and about three
times the number of cases of the second most efficient algorithm (PrefSAT).

Keywords. argumentation semantics, argumentation features, algorithm selection

1. Introduction

Dung’s theory of abstract argumentation frameworks [1] provides a general model, which
is widely recognized as a fundamental reference in computational argumentation in
virtue of its simplicity, generality, and ability to capture a variety of more specific ap-
proaches as special cases. An abstract argumentation framework (AF) consists of a set of
arguments and of an attack relation between them. The concept of extension plays a key
role in this simple setting, where an extension is intuitively a set of arguments which can
“survive the conflict together”. Different notions of extensions and of the requirements
they should satisfy correspond to alternative argumentation semantics, whose definitions
and properties are an active investigation subject since two decades [2, 3].

In [1] four “traditional” semantics were introduced, namely complete, grounded, sta-
ble, and preferred semantics. Associated to each semantics, there are several computa-
tional problems and they include decision and construction problems, which turn out to
be computationally intractable for most of argumentation semantics [4]. In this paper we
focus on the extension enumeration problem, i.e. constructing all extensions prescribed
for a given AF: its solution provides complete information concerning the justification

1Corresponding Author.



status of arguments and subsumes the solutions to the other problems. In particular, we
consider preferred semantics, which represents the main contribution in Dung’s theory,
as it allows multiple extensions (differently from grounded semantics), the existence of
extensions is always guaranteed (differently from stable semantics), and no extension
is a proper subset of another extension (differently from complete semantics). The enu-
meration problem associated to this semantics is at the second level of the polynomial
hierarchy [4]: this justifies the search for efficient mechanisms for solving it.

Among others, four solvers for the preferred extensions enumeration have been re-
cently proposed: AspartixM [5], NAD-Alg [6], PrefSAT [7] and SCC-P [8]. Previous
empirical analyses have shown significant runtime variations between them, arising even
among AFs with the same number of arguments [7]. Moreover, in some cases different
solvers require dramatically different amount of CPU-times given the same AF. In short,
according to our exploration, there is not a “gold” solver among the four considered.

The aim of this paper is to provide an approach to predict how a given solver will
perform on a given AF, and thus automatically select the “best solver”. Such predictions
are possible using so-called empirical performance models (EPMs) [9] — successfully
applied for instance in SAT, MIP, TSP and Automated Planning [10, 11, 12, 13, 14, 15]
— which require the following steps to be constructed. First, each solver is run on a large
number of AFs and, for each AF, each solver’s performance (e.g. the CPU-runtime) is
recorded. Furthermore, a set of instance features is computed for each AF: an instance
feature summarises a property of the AF. A predictive model is then learnt as a mapping
from instance features to solvers performance.

This work establishes an extensive set of features for Argumentation Frameworks,
and investigates its effectiveness in predicting algorithm performance and performing an
efficient algorithm selection. Recently, we discussed a preliminary restricted set of fea-
tures [16] considering only PrefSAT and SCC-P. In this paper we significantly extend
both the set of features, and the set of solvers, and we also discuss the implication re-
lated to the algorithm selection. The importance of this contribution is twofold. From a
theoretical point of view, it provides some explanation of the features causing the run-
time variations between different approaches, an issue which is still unexplained. From a
practical perspective, the methodology proposed in the paper can be extended to include
any further solver, and allows to combine the solvers so as to improve the performance
of each of them used in isolation.

The paper is organized as follows. In Section 2 we review Dung’s abstract frame-
work theory, and we briefly describe the functioning of each of the four solvers men-
tioned above. Section 3 discusses the chosen features for AFs, and Section 4 presents
the algorithm-selection experimental results given the chosen set of features. Section 5
concludes the paper.

2. Background

2.1. Dung’s Argumentation Framework

An argumentation framework [1] consists of a set of arguments and a binary attack rela-
tion between them.2

2In this paper we consider only finite sets of arguments: see [17] for a discussion on infinite sets of arguments.



Definition 1. An argumentation framework (AF) is a pair Γ = 〈A,R〉 where A is a set
of arguments and R ⊆ A ×A . We say that b attacks a iff 〈b,a〉 ∈R, also denoted as
b→ a. The set of attackers of an argument a will be denoted as a− , {b : b→ a}, the set
of arguments attacked by a will be denoted as a+ , {b : a→ b}.

An argument a without attackers, i.e. such that a− = /0, is said initial. The neighbour
of an argument a is a−∪a+. Moreover, each argumentation framework has an associated
directed graph where the vertices are the arguments, and the edges are the attacks.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

• a set S⊆A is a conflict–free set of Γ if @ a,b ∈ S s.t. a→ b;
• an argument a ∈A is acceptable with respect to a set S ⊆A of Γ if ∀b ∈A s.t.

b→ a, ∃ c ∈ S s.t. c→ b;
• a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and every

element of S is acceptable with respect to S of Γ.

An argumentation semantics σ prescribes for any AF Γ a set of extensions, denoted
as Eσ (Γ), namely a set of sets of arguments satisfying the conditions dictated by σ . Here
we need to recall the definitions of complete (denoted as C O), and preferred (denoted as
PR) semantics only.

Definition 3. Given an AF Γ = 〈A,R〉:

• a set S⊆A is a complete extension of Γ, i.e. S ∈ EC O(Γ), iff S is admissible and
∀a ∈A s.t. a is acceptable w.r.t. S, a ∈ S;

• a set S ⊆ A is a preferred extension of Γ, i.e. S ∈ EPR(Γ), iff S is a maximal
(w.r.t. set inclusion) complete extension of Γ.

2.2. Algorithms for Solving the Preferred Extensions Enumeration Problem

In this paper we consider four state-of-the-art approaches for solving the problem of
preferred extensions enumeration: AspartixM, NAD-Alg, PrefSAT, and SCC-P.

AspartixM [5] expresses argumentation semantics in Answer Set Programming
(ASP): a single program is used to encode a particular argumentation semantics, and
the instance of an argumentation framework is given as an input database. Tests
for subset-maximality exploit the metasp optimisation frontend for the ASP-package
gringo/claspD.3

NAD-Alg [6] is a depth-first backtracking procedure that traverses a binary search
tree. The root considers the case where all the arguments in the AF are blank, i.e. not
yet visited. At each step of the search process, a blank node is selected and assumed to
belong to the preferred extension, and a local evaluation on its neighbour is performed.
Then the procedure recursively call itself on the assumption that the above arguments are
respectively in or out the extension. Any inconsistency leads to a backtrack.4

3AspartixM has been executed with gringo version 3.0.3 and claspD version 1.1.4.
4NAD-Alg’s implementation is available at https://sourceforge.net/projects/argtools/files/

?source=navbar (retrieved on 11th March 2014).

https://sourceforge.net/projects/argtools/files/?source=navbar
https://sourceforge.net/projects/argtools/files/?source=navbar


PrefSAT [7] performs a search in the space of complete extensions to enumerate
the maximal ones. In particular, PrefSAT encodes the constraints corresponding to com-
plete extensions into a SAT-problem. A SAT-solver is then used to solve it, thus returning
a complete extension. A depth-first technique is then applied in order to determine the
maximal complete extension containing the one already found — i.e. a preferred exten-
sion. Previously explored search states are excluded from further exploration by adding
specific constraints to the encoding of complete extensions.

SCC-P is an instantiation of the meta-algorithm proposed in [8] which exploits the
SCC-recursiveness schema [18]: it recursively decomposes a framework so as to com-
pute semantics extensions on restricted sub-frameworks, in order to reduce the computa-
tional effort. At the beginning, the extensions of the frameworks restricted to the initial
Strongly Connected Components (SCCs), i.e. those not receiving attacks from others,
are computed and combined together. Then each SCC which is attacked only from initial
SCCs is considered, and for each extension already obtained, the extensions of such a
SCC are locally computed and merged with it. The process is then applied to all SCCs
following their partial order, until no remaining SCCs are left to process. Moreover, as
the name suggests, the algorithm is recursively applied. For every SCC, the local com-
putation is performed as follows. First, all arguments attacked by the extension selected
in the previous SCCs are suppressed. Then, the procedure is recursively applied to the
remaining part of the SCC. When the base of the recursion is reached, a specific “base
algorithm” is called. Such base algorithm can be obtained by generalizing existing algo-
rithms in order to compute extensions in restricted sub-frameworks, e.g. a variation of
PrefSAT as proposed in [8].

3. Features

As mentioned in Section 1, accurate EPMs rely on a “good” set of features. A feature is a
real number that summarises a property of AFs. Our feature set includes 50 values, which
exploit the representation of AFs both as direct (loss-less) or undirect (lossy) graphs.

We are able to extract 26 features from the representation of AFs as direct graphs
(DG). Each feature belongs to one of the following four classes: graph size (5 features),
degree (4), SCC (5), graph structure (5), CPU-times (7).

• Graph size features: number of vertices, number of edges, ratios vertices–edges
and inverse, and graph density (NT – non trivial).5

• Degree features (overall NT): average, standard deviation, maximum, minimum
degree values across the nodes in the graph.

• SCC features (overall NT): number of SCCs, average, standard deviation, maxi-
mum and minimum size.

• Graph structure: presence of auto-loops, number of isolated vertices (NT), flow
hierarchy (NT) and results of test on Eulerian (NT) and aperiodic structure of the
graph (NT).

• CPU-times: the needed CPU-time for extracting NT features and overall NT
classes.

5We consider as trivial the extraction of features that requires less than 0.001 seconds. Such features are, for
instance, those requiring only elements count (e.g., number of edges) or easy calculations (e.g., ratios vertices–
edges).



Direct Graph Features (DG) Undirect Graph Features (UG)
Class CPU-Time # feat Class CPU-Time # feat

Mean stdDev Mean stDev

Graph Size 0.001 0.009 5 Graph Size 0.001 0.003 4
Degree 0.003 0.009 4 Degree 0.002 0.004 4
SCC 0.046 0.036 5 Components 0.011 0.009 5
Graph Structure 2.304 2.868 5 Graph Structure 0.799 0.684 1

Triangles 0.787 0.671 5

Table 1. Summary of proposed features grouped by class. Mean indicates the average CPU-time needed for
extracting all the features of the class, “stdDev” is the standard deviation and “# feat” the number of features
of the class.

The features (UG) extracted by the undirect graph representation of AFs — i.e. re-
placing each directed attack with an undirected edge — and distinct from the DG features
are 24, belonging to six classes: graph size (4), degree (4), components (5), triangles (5),
graph structure (1), times (5).

• Graph size features: number of edges, ratios vertices–edges and inverse, and
graph density (NT).

• Degree features (overall NT): average, standard deviation, maximum, minimum
degree values across the nodes in the graph.

• Components features (overall NT): number of connected components, average,
standard deviation, maximum and minimum size.

• Graph structure: transitivity of the graph (NT).
• Triangles features (overall NT): total number of triangles in the graph and aver-

age, standard deviation, maximum, minimum number of triangles per vertex.
• CPU-times: the needed CPU-time for extracting NT features and overall NT

classes.

Table 1 summarises the list of features, and reports the average and standard devi-
ation of the CPU-time associated with the extraction of each feature group. The over-
all feature extraction process takes around 3 CPU-time seconds per AF (apart from the
aperiodicity of the graph which requires up to 20 seconds). Each AF is solved in tens
of hundreds of seconds: therefore we can consider the feature extraction CPU-time as
negligible compared to the CPU-time required for solving an AF.

4. Experimental Analysis

In this section we describe the protocol and present the results of a large experimental
study examining AspartixM [5], NAD-Alg [6], PrefSAT [7] and SCC-P [8].

4.1. Experimental Protocol

We randomly generated a set of 10,000 AFs, varying the number of SCCs between 0 and
100, the number of arguments between 10 and 5,000, and considering different uniformly
distributed probabilities of attacks, leading to AFs with a number of attacks between 35
and (approximately) 270,000.



Solver B1 B2 B3

AspartixM number of nodes density of directed graph size of max. SCC
PrefSAT density of directed graph number of SCCs aperiodicity
NAD-Alg density of directed graph CPU-time for density CPU-time for Eulerian
SCC-P density of directed graph number of SCCs size of the max SCC

Table 2. Best features selected for each solver, by the greedy approach, for predicting runtime.

The solvers and the feature extraction algorithms have been run on a cluster with
computing nodes equipped with 2.5 Ghz Intel Core 2 Quad ProcessorsTM, 8 GB of RAM
and Linux operating system. A cutoff of 900 seconds was imposed to compute the pre-
ferred extensions for each AF. For each solver we recorded the overall result: success (if
it finds each preferred extension), crashed, timed-out or ran out of memory. Unsuccess-
ful runs – crashed, timed-out or out of memory – were assigned a runtime equal to the
cutoff.

We considered EPMs for both classification and regression approaches. Classifica-
tion approaches classify the AF into a single category, corresponding to the algorithm
which is predicted to be the fastest. These approaches do not estimate the performance
difference between solvers, rather they only look for the best one. Regression techniques
model the behaviour of each algorithm in order to predict its runtime on a new AF. The
EPMs were evaluated using a 10-fold cross-validation approach on a uniform random
permutation of our instances — a standard method where nine slices are used for training
and the tenth for testing.

We first assessed the performance of various classification and regression models,
using the WEKA tool [19]. We considered well-known machine learning techniques:
linear regression, neural networks, Gaussian processes, decision trees and rule-based
techniques, and we observed that random forests performed best in classification, and
M5-Rules in regression.

The EPMs have been generated considering 7 different sets of features: the set in-
cluding the single best feature (B1), the sets including the best two and three features
(B2, B3), the set including the features extracted from the directed graph (DG), the set
including those extracted from undirected graph (UG), and the set with all the extracted
features (All). It turns out that B1, B2 and B3 include only features from the directed
graph. The subsets of features are selected according to a greedy forward search based
on the Correlation-based Feature Selection (CFS) attribute evaluator [20]. The search
starts from an empty subset. At each iteration, the feature which increases the most the
evalution of the current subset is added. The search stops when the addition of any at-
tribute results in a decrease of the subset evaluation. The evaluation of a subset of fea-
tures considers the predictive ability of each feature along with the degree of redundancy
between them. Given the results shown in [8], SCC-related information are believed to be
extremely informative, thus expected to play a significant role in the EPMs performance.

4.2. Runtime Prediction

Table 3 shows the results, in terms of root mean square error (RMSE), for regression
using the best performing models, with 10-fold cross validation on a uniform random
permutation of our full set of 10,000 AFs. Since solvers runtimes vary from 0.01 to



Regression (Lower is better)
B1 B2 B3 DG UG SCC All

AspartixM 0.66 0.49 0.49 0.48 0.49 0.52 0.48
PrefSAT 1.39 0.93 0.93 0.89 0.92 0.94 0.89
NAD-Alg 1.48 1.47 1.47 0.77 0.57 1.61 0.55
SCC-P 1.36 0.80 0.78 0.75 0.75 0.79 0.74

Table 3. Cross-validated RMSE of log10(runtime) for M5-rules models using different features subsets. Val-
ues in bold indicate the best results, also considering hidden decimals.

900 CPU seconds, we trained our regression models to predict log-runtime rather than
absolute runtime: this have been effective in similar circumstances [9]. The three best
features selected by the greedy approach are summarised in Table 2.

This analysis provides several insights on features that affect solvers performance.
First, the density of directed graph — i.e. how close it is to a complete graph — is
strongly related to the performance of all the solvers since it is always among the best 3
features. Second, we observe that also SCC-related information, mainly the number of
SCCs and the size of the maximum one, are often selected.

Results shown in Table 3 indicate that using all the extracted features leads to the best
possible results. Some solvers seem to have easier to predict behaviours, while others are
somehow more complex. It is interesting to note that DG and UG features lead to similar
predictive performances, which are usually close to those achieved by exploiting the B3
set. Moreover, DG features allow to achieve an RMSE which is very close to the one
achievable by exploiting the All set for AspartixM, SCC-P and PrefSAT. Interestingly,
this is not true for NAD-Alg. In this case the UG set of features provides more useful
information for EPMS than DG. Moreover, SCC-related features are not informative for
predicting the performance of NAD-Alg, and this is confirmed also by the selected B3
features. Finally, we noted that the behaviours of PrefSAT and SCC-P appear to be hard
to predict, when compared to the other considered solvers. A possible explanation is due
to the fact that NAD-Alg ran out of time on most of the AFs, and AspartixM solved a
significant number of them in 800-899 CPU-time seconds. PrefSAT and SCC-P show
different, and more variegated, CPU-time distributions.

4.3. Classification

Table 4 shows the results, in terms of overall accuracy and per-algorithm precision, of the
classification EPM, evaluated with 10-fold cross validation. In this approach, an AF is
member of the class corresponding to the solver which has been the fastest in enumerat-
ing all the preferred extensions. From the set of 10,000 AFs, those which were not solved
by any solver were removed. Differently from the regression EPMS, which generate a
predictive model for each considered solver, the classification approach trains a single
model that selects the most performant solver.

The three best features selected for the classification EPM are, in the order, (1) the
number of vertices, (2) the density of the directed graph and (3) the minimum degree
value of the directed graph.

Several considerations can be drawn from Table 4:

• the whole set of features usually allows the EPM to achieve the best predicting
performance;



Classification (Higher is better)
B1 B2 B3 DG UG SCC All

Accuracy 48.5% 70.1% 69.9% 78.9% 79.0% 55.3% 79.5%
Precision AspartixM 35.0% 64.6% 63.7% 74.5% 74.9% 42.2% 76.1%
Precision PrefSAT 53.7% 67.8% 68.1% 79.6% 80.5% 60.4% 80.1%
Precision NAD-Alg 26.5% 69.2% 69.0% 81.7% 85.1% 35.3% 86.0%
Precision SCC-P 54.3% 73.0% 72.7% 76.6% 76.8% 57.8% 77.2%

Table 4. Evaluation of classification EPMs for different features subsets. A precision value smaller than 50%
indicates that most of the AFs have been mistakenly classified as members of the class.

0

50

100

150

200

500 1000 1500 2000 2500 3000 3500 4000 4500

PrefSAT
SCC-P

AspartixM
NAD-Alg

Figure 1. The number of time each solver has been the fastest one w.r.t. the cardinality of the set of arguments.

• using the best 2 features instead of the single best one guarantees better perfor-
mance;

• SCC-related features are not as informative as we believed;
• features derived from undirected graphs are usually better than those generated

by considering directed graphs. This counter-intuitive result (UG are lossy) is
further addressed in Section 5. However, no features from the UG set are included
in the B3 one: this seems to suggest that undirected graph features are useful
while exploited all together, while DG ones seem to be better when considered
singularly.

As mentioned above, the greedy approach used for determining the most informative
features indicated the number of vertices as the best one. Figure 1 shows how the number
of vertices of AFs affect the performance of the considered solvers. Given the precision
performance reported in Table 4, and the shape of the graph in Figure 1, we can argue
that this feature is quite informative for selecting between SCC-P and PrefSAT, which
are the fastest systems on most of the considered AFs, but does not provide very reliable
information about the other solvers.

4.4. Algorithm Selection

After evaluating the predicting performance of classification and regression EPMs, we
compared them in order to understand which is the most promising approach to be used
for on-line algorithm selection. Algorithm selection done by exploiting the classification



Metric Fastest Metric IPC
(max. 1007) (max. 1007, log. scale)

AspartixM 106 NAD-Alg 210.1
NAD-Alg 170 AspartixM 288.3
PrefSAT 278 PrefSAT 546.7
SCC-P 453 SCC-P 662.4

EPMs Regression 755 EPMs Regression 887.7

EPMs Classification 788 EPMs Classification 928.1

Table 5. Algorithm selection performance — w.r.t. single solver (upper part) — using two metrics: the number
of time each selection approach and solver has been the fastest one on the testing set of AFs (Fastest); and the
IPC value (IPC). The approaches are ordered from the worse to the best (according to each metric).

EPM is straightforward: the best predicted solver is used for solving the testing AF.
Instead, regression EPMs require to predict the runtime of each considered solver, and
to select the one predicted to be the fastest. Let us notice that the CPU-time required for
generating the predictions, in both classification and regression EPMs, is extemely low.
Such predictions are generated by solving easy case-based formulas that test a feature
value at a time. The most expensive step is the generation of the predictive models, which
requires also to solve the training problems and extract the features from all of them; this
is done offline, thus it does not affect the algorithm selection performance.

For this comparison we used the set of All the considered features, and divided the
10,000 AFs in separate training and testing instances; the 1,040 testing instances have
been randomly selected across all the different sizes. This allows a more objective com-
parison between the techniques. The time needed for extracting on-line the AF features
is again negligible w.r.t. the CPU-time needed by the solvers to enumerate the preferred
extensions (cf. Section 3). All the solvers failed to enumerate the preferred extensions
in the given time on 33 AFs over the 1,040 test instances: these instances were thus
excluded from the following evaluation.

For each AF we considered (1) the fastest solver and (2) whether or not either the
Regression or the Classification EPMs successfully select such a solver, counting the
times that this happened. The result is shown in the left part of Table 5. There is not
a great difference between classification and regression-based algorithm selection; the
former is able to select the best algorithm on 788 testing AFs (78%, clearly consistent
with Table 4), while the latter on 755 (75%). In most of the cases (834 times) both
the EPMs select the same algorithm, and in 687 cases such selection was right. It is
worthy noting that there is a remarkable difference between the performance of algorithm
selection approaches and the single solvers.

It can be argued that the metric used, the number of time a system has been the
fastest, albeit is good for evaluating the algorithm selection performance, might not be
very informative from the performance gain perspective. Thus, we analysed the IPC
score, borrowed from the 2008 International Planning Competition.6 For each AF, each
system gets a score of T ∗/T , where T is its execution time and T ∗ the best execution
time among the compared systems, or a score of 0 if it fails in that case. Runtimes be-
low 0.01 seconds get by default the maximal score of 1. The IPC score is interesting
because it considers, at the same time, the runtimes and the solved instances. Again,

6 http://ipc.informatik.uni-freiburg.de/ .

http://ipc.informatik.uni-freiburg.de/


the maximum IPC score achievable on the testing AFs is 1007, which corresponds to a
system that always selects the best solver on the instances where at least a solver suc-
ceeded. Clearly, on AFs where both the EPMs selected the same algorithm, they obtain
the same IPC score. According to IPC score, the classification-based algorithm selection
approach scores 928.1, followed by the regression EPMs with a score of 887.7. SCC-P
and PrefSAT score respectively 662.4 and 546.7; finally AspartixM scores 288.3 and
NAD-Alg 210.1 (right part of Table 5). Also by comparing the systems using the IPC
score, a significant difference can be found between algorithm selection methods and
single solvers.

5. Conclusions

This paper is the first complete study on EPMs [9] applied to argumentation problems,
in particular to the problem of enumerating the preferred extensions. To this aim, we
considered the four most recent relevant approaches in the literature, namely AspartixM
[5], NAD-Alg [6], PrefSAT [7] and SCC-P [8].

One of the contributions of this paper is to introduce 50 features of AFs exploited in
EPMs development, thus significantly extending our preliminary proposal [16]. In this
paper we show that these features allow us to determine the “best” algorithm — rela-
tively to the CPU-time — with an accuracy of about 80%. Moreover, via an empirical
investigation over 10,000 AFs, we derive an algorithm selection approach, based on clas-
sification, which can identify the fastest algorithm in about the double of the number of
cases where the most efficient algorithm outperforms the other ones (SCC-P), and about
three times the number of cases of the second most efficient algorithm (PrefSAT). It is
worth mentioning that the obtained results are consistent with previous empirical inves-
tigations [7]. For instance, from Table 4, the performance of PrefSAT depends on the
number of vertices (feature B1) much more than AspartixM and NAD-Alg. In [7] we
show that both AspartixM and NAD-Alg show behaviours independent from the cardi-
nality of the set of arguments, while they depend on the percentage of attacks. Finally,
from Table 2, we can observe that the density of directed graph is the most informative
feature, according to the CFS attribute evaluator, for predicting runtimes.

Let us notice here that the EPMs which consider features derived from undirected
graphs — i.e. without considering the directionality of attacks — are usually better than
those generated by considering directed graph ones (cf. Table 4). Since preferred seman-
tics satisfies the directionality principle [21], one could see this as a counter-intuitive
result. However, it is worth mentioning that both AspartixM and NAD-Alg have some
recurrent behaviours — the former often ends the enumeration around 800− 900 sec-
onds, the latter often do not end the enumeration in the given time — that turn out to be
easily predictable. It is possible that these behaviours are affected just by the features of
the undirected graphs.

Nevertheless, this fails to explain the behaviour of PrefSAT and SCC-P. As to
PrefSAT, it has to be remarked that its performance depends on the performance of the
SAT-solver used.Therefore, further investigations on the translation into SAT problems
and its dependency from the AF structure should be considered. Moreover, in [7] we
show the dramatic performance difference due to the different encoding of complete se-
mantics in SAT problems: an additional investigation on this topic is already envisaged.



As to SCC-P, the (little) advantage exhibited by the features derived from the undirected
graph seems to be consistent with the meta-algorithm based on the SCC-recursiveness
schema [18], which allows to apply the SAT-solver just into single SCCs.

We believe that this discussion motivates the search for additional features specifi-
cally designed for exploring the characteristics of AFs in relation with the semantics we
are analysing. In fact, with this work we start an investigation whose importance goes be-
yond the theoretical study of the features: EPMs have been successfully applied to algo-
rithms for solving other types of problems in artificial intelligence [10, 11, 12, 13, 14, 15].
Therefore, similarly to other fields, also industrial applications based on argumentation
(e.g. [22]) can take advantage by the EPMs developed in this work — or by this method-
ology — in order to determine the “best” algorithm for their purpose. We also believe
that the results provided can guide the development of more sophisticated solvers.

Future work can be envisaged both from a theoretical point of view — i.e. determin-
ing relevant semantics-dependent features — as well as from an “engineering” perspec-
tive, by combining algorithms in portfolios and considering probing features. Portfolio
approaches are more complex than algorithm selection ones, since they have to (i) select
a subset of solvers; (ii) order the solvers and; (iii) allocating CPU-time to each solver.
Such increased complexity can potentially lead to further performance improvements.
Probing features are computed by briefly running an existing algorithm on the given AF
and extracting characteristics from that algorithm’s trajectory [9].

References

[1] Phan M Dung. On the Acceptability of Arguments and Its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming, and n-Person Games. Artificial
Intelligence, 77(2):321–357, 1995.

[2] Pietro Baroni and Massimiliano Giacomin. Semantics of Abstract Argumentation
Systems. In Argumentation in Artificial Intelligence, pages 25–44. Springer, 2009.

[3] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to
argumentation semantics. Knowledge Engineering Review, 26(4):365–410, 2011.

[4] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In
Argumentation in AI, chapter 5, pages 85–104. Springer, 2009.

[5] Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Wallner, and Stefan Woltran. Mak-
ing Use of Advances in Answer-Set Programming for Abstract Argumentation Sys-
tems. In Proceedings of the 19th International Conference on Applications of
Declarative Programming and Knowledge Management (INAP), pages 114–133,
2011.

[6] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for decision problems
in argument systems under preferred semantics. Artificial Intelligence, 207:23–51,
2014.

[7] Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro Vallati. Com-
puting Preferred Extensions in Abstract Argumentation: A SAT-Based Approach.
In Proceedings of Theory and Applications of Formal Argumentation (TAFA), pages
176–193, 2013.



[8] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina Zanella. A
SCC recursive meta-algorithm for computing preferred labellings in abstract argu-
mentation. In Proceedings of the 14th International Conference on Principles of
Knowledge Representation and Reasoning (KR), 2014. to appear.

[9] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm run-
time prediction: Methods & evaluation. Artificial Intelligence, 206:79 – 111, 2014.

[10] Eric A. Brewer. Portable high-performance supercomputing: high-level platform-
dependent optimization. PhD thesis, Massachusetts Institute of Technology, 1994.

[11] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical hardness
models: methodology and a case study on combinatorial auctions. Journal of the
ACM, 56(4):1–52, 2009.

[12] Eugene Nudelman, Kevin Leyton-Brown, Alex Devkar, Yoav Shoham, and Holger
Hoos. Understanding random SAT: Beyond the clauses-to-variables ratio. In Prin-
ciples and Practice of Constraint Programming - CP 2004, pages 438–452, 2004.

[13] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla:
Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Re-
search, 32:565–606, 2008.

[14] Kate Smith-Miles, Jano van Hemert, and . Xin Yu Lim. Understanding TSP dif-
ficulty by learning from evolved instances. In Proceedings of the 4th Interna-
tional Conference on Learning and Intelligent Optimization (LION), pages 266–
280, 2010.

[15] Chris Fawcett, Mauro Vallati, Frank Hutter, Jörg Hoffmann, Holger H. Hoos,
and Kevin Leyton-Brown. Improved features for runtime prediction of domain-
independent planners. In Proceedings of the 24th International Conference on Au-
tomated Planning and Scheduling (ICAPS), 2014. to appear.

[16] Mauro Vallati, Federico Cerutti, and Massimiliano Giacomin. Argumentation
Frameworks Features: an Initial Study. In Proceedings of the 21st European Con-
ference on Artificial Intelligence (ECAI), 2014.

[17] Pietro Baroni, Federico Cerutti, Paul E. Dunne, and Massimiliano Giacomin. Au-
tomata for Infinite Argumentation Structures. Artificial Intelligence, 203:104–150,
2013.

[18] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-recursiveness:
a general schema for argumentation semantics. Artificial Intelligence, 168(1-2):
165–210, 2005.

[19] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA data mining software: An update. SIGKDD Explo-
rations, 11(1):10–18, 2009.

[20] Mark A. Hall. Correlation-based Feature Subset Selection for Machine Learning.
PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[21] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of
extension-based argumentation semantics. Artificial Intelligence (Special issue on
Argumentation in A.I.), 171(10/15):675–700, 2007.

[22] Pietro Baroni, Marco Romano, Francesca Toni, Marco Aurisicchio, and Giorgio
Bertanza. An Argumentation-Based Approach for Automatic Evaluation of Design
Debates. In Workshop on Computational Logic in Multi-Agent Systems, pages 340–
356, 2013.


