
Complete Assumption Labellings

Claudia SCHULZ, Francesca TONI
Department of Computing, Imperial College London, UK

Abstract. Recently, argument labellings have been proposed as a new (equivalent)
way to express the extension semantics of Abstract Argumentation (AA) frame-
works. Here, we introduce a labelling approach for the complete semantics in
Assumption-Based Argumentation (ABA), where labels are assigned to assump-
tions rather than whole arguments. We prove that the complete assumption labelling
corresponds to the complete extension semantics in ABA, as well as to the complete
extension semantics and the complete argument labelling in AA.

Keywords. Assumption-Based Argumentation, Complete Semantics, Labelling
Semantics

1. Introduction

Abstract Argumentation (AA) [1] studies conflicts between abstract entities called argu-
ments, and provides semantics for deciding which sets of arguments may be accepted.
Different semantics have been defined [1,2], yielding different sets of accepted argu-
ments, referred to as extensions. Another (equivalent) way of defining argumentation se-
mantics is by assigning labels to arguments [3], identifying not only accepted arguments,
but also rejected and neutral ones.

In contrast to AA, where a set of arguments and a set of attacks between them is
given, Assumption-Based Argumentation (ABA) [4,5] provides a mechanism for con-
structing arguments from given rules and assumptions. Moreover, attacks between argu-
ments are not predefined as in AA, but arise based on the structure of arguments and a
notion of contrary of assumptions. Another difference is that the semantics of an ABA
framework can be defined in terms of sets of accepted assumptions as well as sets of
accepted arguments [6]. Since ABA is an instance of AA [6], an ABA framework can
be mapped onto a corresponding AA framework, such that the extensions of the ABA
framework correspond to the extensions of the AA framework (with the exception of the
semi-stable extension semantics [7]).

Inspired by the complete argument labelling for AA, which coincides with the com-
plete AA extension semantics, we introduce a way to express the complete ABA exten-
sion semantics in terms of a labelling, where labels are assigned to single assumptions
as opposed to the AA approach to label whole arguments. We show that this complete
assumption labelling corresponds to the complete extension semantics in ABA as well
as to the complete extension semantics and the complete argument labelling of the cor-
responding AA framework. This new assumption labelling approach has the advantage
that rejected (OUT) assumptions and neutral assumptions which are neither accepted nor
rejected (UNDEC) are distinguished. This distinction of non-accepted assumptions is im-

portant in applications, e.g. when using ABA for decision making, where it is neces-
sary to know whether an assumption is rejected for sure or whether there is not enough
evidence to definitely accept or reject it.

2. Background

An Abstract Argumentation (AA) framework [1] is a pair 〈Ar,Att〉, where Ar is a set
of arguments and Att ⊆ Ar × Ar is a binary attack relation between arguments. A
pair (A,B) ∈ Att expresses that argument A attacks argument B. A set of arguments
Args ⊆ Ar attacks an argument B ∈ Ar iff there is A ∈ Args such that A attacks B.
Args+ = {A ∈ Ar |Args attacks A} denotes the set of all arguments attacked by Args
[2].
Let Args ⊆ Ar be a set of arguments.

• Args defends A ∈ Ar iff Args attacks every B ∈ Ar attacking A.
• Args is a complete argument extension of 〈Ar,Att〉 iff Args consists of all ar-

guments it defends and Args does not attack any A ∈ Args.

An equivalent way of expressing the extension semantics of an AA framework is in
terms of argument labellings [8,3].

An argument labelling of 〈Ar,Att〉 is a total function LabArg : Ar →
{in, out, undec}. The set of all arguments labelled in by LabArg is denoted
in(LabArg) = {A ∈ Ar | LabArg(A) = in}. The sets out(LabArg) and
undec(LabArg) consist of all arguments labelled out and undec, respectively.

An argument labelling LabArg is a complete argument labelling of 〈Ar,Att〉 [3] iff
for each argument A ∈ Ar it holds that:

• if LabArg(A) = in then for each B ∈ Ar attacking A, LabArg(B) = out;
• if LabArg(A) = out then there exists some B ∈ Ar attacking A such that
LabArg(B) = in;

• if LabArg(A) = undec then there exists some B ∈ Ar attacking A such
that LabArg(B) = undec and there exists no C ∈ Ar attacking A such that
LabArg(C) = in.

Complete argument extensions coincide with sets of arguments labelled in [3].
An Assumption-Based Argumentation (ABA) framework [4,5] is a tuple 〈L,R,A, ¯〉,

where

• (L,R) is a deductive system, with L a language andR a set of inference rules of
the form s0 ← s1, . . . , sn (n ≥ 0) where s0, . . . , sn ∈ L;

• A ⊆ L is a non-empty set of assumptions;
• ¯ is a total mapping from A into L defining the contrary of assumptions, where α

denotes the contrary of α ∈ A.

We will here focus on flat ABA frameworks [4], where assumptions only occur on the
right of the arrow in inference rules.

An argument AP ` s for conclusion s ∈ L supported by assumption-premises
AP ⊆ A is a finite tree, where every node holds a sentence in L or the sentence τ (where
τ /∈ L stands for “true”), such that

• the root node holds s;
• for every node N

∗ if N is a leaf then N holds either an assumption or τ ;
∗ if N is not a leaf and N holds the sentence t0, then there is an inference rule
t0 ← t1, . . . , tm ∈ R and either m = 0 and the only child node of N holds τ
or m > 0 and N has m children holding t1, . . . , tm;

• AP is the set of all assumptions held by leaf nodes.

We sometimes name arguments with capital letters, e.g. A :AP ` s is an argument with
name A. With an abuse of notation, the name of an argument is also used to refer to the
whole argument.

Let Asms,Asms1 ⊆ A be sets of assumptions and let α ∈ A.

• Asms attacks α iff there exists an argument AP ` α such that AP ⊆ Asms.
Equivalently, we say α is attacked by Asms.

• Asms attacks Asms1 iff Asms attacks some α ∈ Asms1.
• Asms+ = {α ∈ A |Asms attacks α} [7].
• Asms defends α iff Asms attacks all sets of assumptions attacking α.
• Asms is a complete assumption extension of 〈L,R,A, ¯〉 iff Asms consists of

all assumptions it defends and Asms does not attack itself.

An ABA framework 〈L,R,A, ¯〉 can be mapped onto a corresponding AA frame-
work 〈ArABA, AttABA〉 [6], where

• ArABA is the set of all constructible arguments AP ` s in 〈L,R,A, ¯〉;
• (AP1 ` s1, AP2 ` s2) ∈ AttABA iff s1 is the contrary of some α ∈ AP2.

Given a complete assumption extension Asms of 〈L,R,A, ¯〉, the set of all ar-
guments supported by any subset of Asms forms a complete argument extension
of 〈ArABA, AttABA〉. Conversely, given a complete argument extension Args of
〈ArABA, AttABA〉, the union of all assumptions supporting arguments inArgs is a com-
plete assumption extension of 〈L,R,A, ¯〉 [7].

3. Labelling Assumptions

Inspired by argument labellings in AA, we introduce a labelling for ABA, which assigns
labels to single assumptions rather than whole arguments. In the remainder, and if clear
from the context, we assume as given an ABA framework 〈L,R,A, ¯〉.

Definition 1. An assumption labelling is a total function
LabAsm : A → {IN, OUT, UNDEC}.

IN(LabAsm) = {α ∈ A | LabAsm(α) = IN} consists of all assumptions labelled
IN. OUT(LabAsm) and UNDEC(LabAsm) are the sets of all assumptions labelled OUT

and UNDEC, respectively.

Definition 2. Let LabAsm be an assumption labelling. LabAsm is a complete assump-
tion labelling iff for each assumption α ∈ A it holds that:

• if LabAsm(α) = IN then each set of assumptions attacking α contains some β
such that LabAsm(β) = OUT;

• if LabAsm(α) = OUT then there exists a set of assumptions AP attacking α
such that AP ⊆ IN(LabAsm);

• ifLabAsm(α) = UNDEC then each set of assumptions attacking α contains some
β such that LabAsm(β) 6= IN, and there exists a set of assumptionsAP attacking
α such that AP ∩ OUT(LabAsm) = ∅.

Example 1. Consider the following ABA framework, which we call ABA1:

• L = {a, b, c, α, β, γ}
• R = {a← α ; a← β ; c← β, ; b← γ}
• A = {α, β, γ}
• α = a ; β = b ; γ = c

ABA1 has three complete assumption labellings:

• IN(LabAsm1) = ∅, OUT(LabAsm1) = ∅, UNDEC(LabAsm1) = {α, β, γ}
• IN(LabAsm2) = {γ}, OUT(LabAsm2) = {β}, UNDEC(LabAsm2) = {α}
• IN(LabAsm3) = {β}, OUT(LabAsm3) = {α, γ}, UNDEC(LabAsm3) = ∅

Lemma 1. Let LabAsm be an assumption labelling. LabAsm is a complete assumption
labelling iff for each assumption α ∈ A it holds that:

• if each set of assumptions attacking α contains some β such that LabAsm(β)
= OUT, then LabAsm(α) = IN;

• if there exists a set of assumptionsAP attacking α such thatAP ⊆ IN(LabAsm),
then LabAsm(α) = OUT;

• if each set of assumptions attacking α contains some β such that LabAsm(β)
6= IN, and there exists a set of assumptions AP attacking α such that AP ∩
OUT(LabAsm) = ∅, then LabAsm(α) = UNDEC.

Proof. Omitted due to space limitations, but it is straightforward to prove that in each
case α cannot have a different label.

Similarly to AA, the notions of complete assumption labelling and complete as-
sumption extension coincide.

Theorem 2. Let LabAsm be an assumption labelling. LabAsm is a complete as-
sumption labelling iff Asms = IN(LabAsm) is a complete assumption extension with
Asms+ = OUT(LabAsm) and A \ (Asms ∪ Asms+) = UNDEC(LabAsm).

Proof. We prove both directions.

1. From left to right:
We first prove that IN(LabAsm) is a complete assumption extension.

• IN(LabAsm) does not attack itself: Assume IN(LabAsm) attacks itself. Then,
there is a set AP ⊆ IN(LabAsm) attacking some α ∈ IN(LabAsm). By
Definition 2, each set attacking α contains some β labelled OUT. Hence, AP
contains some β labelled OUT. Contradiction.

• IN(LabAsm) contains only assumptions defended by IN(LabAsm): Let α ∈
IN(LabAsm). Then by Definition 2, each set attacking α contains some β
labelled OUT. For each such β there exists a setAP ⊆ IN(LabAsm) attacking
β. Hence, IN(LabAsm) defends α.

• All assumptions defended by IN(LabAsm) are in IN(LabAsm): Let α be
defended by IN(LabAsm), i.e. for each AP1 attacking α there exists some
AP2 ⊆ IN(LabAsm) which attacks AP1. So in every AP1 there is some
β which is attacked by the respective AP2 ⊆ IN(LabAsm). By Lemma 1,
LabAsm(β) = OUT, so each AP1 contains some β labelled OUT. By
Lemma 1, LabAsm(α) = IN.

Asms+ = {α ∈ A |Asms attacks α} = {α ∈ A | IN(LabAsm) attacks α}
= {α ∈ A | α ∈ OUT(LabAsm)} (by Lemma 1) = OUT(LabAsm)
A \ (Asms ∪ Asms+) = {α ∈ A | α /∈ IN(LabAsm), α /∈ OUT(LabAsm)}
= {α ∈ A | α ∈ UNDEC(LabAsm)} = UNDEC(LabAsm)

2. From right to left: We prove that LabAsm satisfies Definition 2.

• Let LabAsm(α) = IN. Then α ∈ Asms, so for all sets AP1 attacking α
there exists some AP2 ⊆ Asms, i.e. AP2 ⊆ IN(LabAsm), which attacks
some β ∈ AP1. By Lemma 1, LabAsm(β) = OUT, so each AP1 attacking α
contains some β labelled OUT.

• Let LabAsm(α) = OUT. Then α ∈ Asms+, so there is AP ⊆ Asms attack-
ing α. Thus, there is AP ⊆ IN(LabAsm) attacking α.

• Let LabAsm(α) = UNDEC. Then α /∈ Asms and α /∈ Asms+, so α is
not attacked and not defended by Asms. Thus, α is not attacked by any
AP ⊆ IN(LabAsm), so each set attacking α contains some β such that
LabAsm(β) 6= IN. Furthermore, there exists a set AP1 attacking α which is
not attacked by any AP2 ⊆ Asms, i.e. by AP2 ⊆ IN(LabAsm). Hence, AP1

does not contain a γ labelled OUT, so AP1 ∩ OUT(LabAsm) = ∅.

Example 2. ABA1 has three complete assumption extensions: Asms1 = ∅ with
Asms+1 = ∅, Asms2 = {γ} with Asms+2 = {β}, Asms3 = {β} with Asms+3 =
{α, γ}. These complete assumption extensions correspond to the three complete as-
sumption labellings of ABA1 as stated in Theorem 2 (Asms1 − LabAsm1, Asms2 −
LabAsm2, Asms3 − LabAsm3).

4. Relationship with AA

We now examine the relationship between complete assumption labellings in ABA and
complete argument labellings in AA. In the remainder, and if clear from the context, we
assume as given an ABA framework 〈L,R,A, ¯〉 and its corresponding AA framework
〈ArABA, AttABA〉. We first investigate the relationship between sets of assumptions in
ABA and sets of arguments in AA in general.

Lemma 3. Let Asms ⊆ A and let Args = {AP ` s ∈ ArABA |AP ⊆ Asms} be the
set of all arguments in ArABA supported by any subset of Asms. Then

• Args+ = {AP ` s ∈ ArABA | ∃α ∈ AP s.t. α ∈ Asms+};

• ArABA \ (Args ∪ Args+)
= {AP ` s ∈ ArABA |AP * Asms,@α ∈ AP s.t. α ∈ Asms+}.

Proof. We prove both statements:

• Args+ = {AP ` s ∈ ArABA | ∃α ∈ AP s.t. α ∈ Asms+}
= {AP ` s ∈ ArABA | ∃α ∈ AP s.t. Asms attacks α}
= {AP ` s ∈ ArABA | ∃α ∈ AP s.t. ∃AP1 ` α and AP1 ⊆ Asms}
= {AP ` s ∈ ArABA | ∃α ∈ AP s.t. ∃AP1 ` α ∈ Args}
= {AP ` s ∈ ArABA |Args attacks AP ` s}
= {A ∈ ArABA |Args attacks A}

• ArABA \ (Args ∪ Args+)
= {AP ` s ∈ ArABA |AP * Asms,@α ∈ AP s.t. α ∈ Asms+}
= {AP ` s ∈ ArABA |AP ` s /∈ Args,AP ` s /∈ Args+}
= {A ∈ ArABA |A /∈ Args,A /∈ Args+}

Due to Theorem 2 and the correspondence between complete assumption extensions
and complete argument extensions [7], it is straightforward that complete assumption
labellings and complete argument labellings coincide. Theorem 4 below characterises the
complete argument labelling corresponding to a given complete assumption labelling.
Conversely, Theorem 5 identifies the complete assumption labelling corresponding to a
given complete argument labelling.

Theorem 4. Let LabAsm be an assumption labelling of 〈L,R,A, ¯〉. LabAsm is a
complete assumption labelling of 〈L,R,A, ¯〉 iff LabArg with

• in(LabArg) = {AP ` s ∈ ArABA |AP ⊆ IN(LabAsm)},
• out(LabArg) = {AP ` s ∈ ArABA | ∃α ∈ AP s.t. α ∈ OUT(LabAsm)},
• undec(LabArg) = {AP ` s ∈ ArABA | ∃α ∈ AP s.t. α ∈ UNDEC(LabAsm),

AP ∩ OUT(LabAsm) = ∅}

is a complete argument labelling of 〈ArABA, AttABA〉.

Proof. We prove both directions of the statement.

1. From left to right:
By Theorem 2: Asms = IN(LabAsm) is a complete assumption extension of
〈L,R,A, ¯〉, with Asms+ = OUT(LabAsm) and A \ (Asms ∪ Asms+) =
UNDEC(LabAsm).
By Theorem 6.1 in [7]: Args = {AP ` s | AP ⊆ IN(LabAsm)} is a complete
argument extension of 〈ArABA, AttABA〉.
By Lemma 3: Args+ = {AP ` s | ∃α ∈ AP s.t. α ∈ OUT(LabAsm)} and
ArABA\(Args∪Args+) = {AP ` s |AP * IN(LabAsm),@α ∈ AP s.t. α ∈
OUT(LabAsm)}.
By Theorem 10 in [3]: in(LabArg) = Args, out(LabArg) = Args+,
undec(LabArg) = ArABA \ (Args ∪ Args+) is a complete argument labelling
of 〈ArABA, AttABA〉.

2. From right to left: We prove that LabAsm satisfies Definition 2.

• Let α ∈ IN(LabAsm). Then {α} ` α ∈ in(LabArg). Thus, all arguments
AP ` s attacking {α} ` α are in out(LabArg). So in each AP attacking α
there is some β such that β ∈ OUT(LabAsm).

• Let α ∈ OUT(LabAsm). Then {α} ` α ∈ out(LabArg). Thus, there is
an argument AP ` s in in(LabArg) attacking {α} ` α. Hence, AP ⊆
IN(LabAsm), so α is attacked by a set AP ⊆ IN(LabAsm).

• Let α ∈ UNDEC(LabAsm). Then {α} ` α ∈ undec(LabArg). Thus, there
is no argument AP1 ` s1 in in(LabArg) attacking {α} ` α and there exists
an argument AP2 ` s2 in undec(LabArg) attacking {α} ` α. Hence, there is
no AP1 ⊆ IN(LabAsm) attacking α, so all sets AP1 attacking α contain a γ
with LabAsm(γ) 6= IN. Furthermore, there exists a set AP2 attacking α such
that AP2 ∩ OUT(LabAsm) = ∅.

Theorem 5. Let LabArg be an argument labelling of 〈ArABA, AttABA〉. If LabArg is
a complete argument labelling of 〈ArABA, AttABA〉 then LabAsm with

• IN(LabAsm) = {α |AP ` s ∈ in(LabArg), α ∈ AP},
• OUT(LabAsm) = {α | {α} ` α ∈ out(LabArg)},
• UNDEC(LabAsm) = {α | {α} ` α ∈ undec(LabArg)}

is a complete assumption labelling of 〈L,R,A, ¯〉.

Proof. LabAsm satisfies Definition 2:

• By Theorem 9 in [3], in(LabArg) is a complete argument extension of
〈ArABA, AttABA〉. By Theorem 6.1 in [7], {α ∈ A|AP ` s ∈ in(LabArg), α ∈
AP} is a complete assumption extension of 〈L,R,A, ¯〉. So by Theorem 2,
IN(LabAsm) = {α |AP ` s ∈ in(LabArg), α ∈ AP}.

• Let α ∈ OUT(LabAsm), that is {α} ` α ∈ out(LabArg). Then there exists an
argument AP ` s ∈ in(LabArg) attacking {α} ` α. Thus, α is attacked by a
set AP ⊆ IN(LabAsm), satisfying Definition 2.

• Let α ∈ UNDEC(LabAsm), that is {α} ` α ∈ undec(LabArg). Then, there
is no argument AP1 ` s1 ∈ in(LabArg) attacking {α} ` α and there is an
argument AP2 ` s2 ∈ undec(LabArg) attacking {α} ` α. Consequently, there
is no AP1 ⊆ IN(LabAsm) attacking α, so all sets AP1 attacking α contain a
β /∈ IN(LabAsm). By Theorem 4, there exists a set AP2 attacking α such that
AP2 ∩ OUT(LabAsm) = ∅, satisfying Definition 2.

Example 3. The corresponding AA framework of ABA1 is 〈ArABA1 , AttABA1〉:

• ArABA1
= {A1 : {α} ` α ; A2 : {β} ` β ; A3 : {γ} ` γ ;

A4 : {α} ` a ; A5 : {β} ` a ; A6 : {β} ` c ; A7 : {γ} ` b}
• AttABA1 = {(A4, A1), (A4, A4), (A5, A1), (A5, A4), (A6, A3), (A6, A7),

(A7, A2), (A7, A5), (A7, A6)}

〈ArABA1 , AttABA1〉 has three complete argument labellings, corresponding to the three
complete assumption labellings (see Example 1):

• in(LabArg1) = ∅, out(LabArg1) = ∅,
undec(LabArg1) = {A1, A2, A3, A4, A5, A6, A7}

• in(LabArg2) = {A3, A7}, out(LabArg2) = {A2, A5, A6},
undec(LabArg2) = {A1, A4}

• in(LabArg3) = {A2, A5, A6}, out(LabArg3) = {A1, A3, A4, A7},
undec(LabArg3) = ∅

5. Conclusion

We introduced a labelling approach for ABA as a new way to express the complete ex-
tension semantics in ABA, where labels are assigned to single assumptions as opposed
to the labelling of whole arguments in AA. We proved correspondence of this complete
assumption labelling with the complete extension semantics in ABA as well as with the
complete extension semantics and the complete argument labelling in AA. In contrast to
the complete extension semantics in ABA, which only distinguishes between accepted
(IN) and non-accepted (not IN) assumptions, the complete assumption labelling divides
the non-accepted assumptions further into the ones rejected for sure (OUT) and neutral
ones which are neither accepted nor rejected (UNDEC). This is an advantage with re-
spect to decision making, e.g. medical treatment decision making, where it is important
to know whether an assumption, e.g. that the patient has a certain allergy, is definitely
rejected or whether it can neither be accepted nor rejected.

The idea to express argumentation semantics in terms of labellings has received con-
siderable attention. Argument labellings have for example been used to create algorithms
computing the semantics of an AA framework [9,10]. We will investigate whether the la-
belling approach for ABA introduced here can help with the implementation of efficient
algorithms for computing the complete semantics in ABA. Future work also includes ex-
tending the assumption labelling to other semantics in ABA and considering labellings
in non-flat ABA frameworks.

Acknowledgements

We thank Martin Caminada for fruitful preliminary discussion.

References

[1] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 1995.

[2] M. Caminada. Semi-stable semantics. In COMMA, 2006.
[3] M. Caminada and D.M. Gabbay. A logical account of formal argumentation. Studia Logica, 2009.
[4] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-theoretic approach

to default reasoning. Artificial Intelligence, 1997.
[5] P.M. Dung, R.A. Kowalski, and F. Toni. Assumption-based argumentation. In Argumentation in Artifi-

cial Intelligence. Springer US, 2009.
[6] P.M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial Intelligence,

2007.
[7] M. Caminada, S. Sà, J. Alcântara, and W. Dvořák. On the difference between assumption-based argu-

mentation and abstract argumentation. Proceedings of BNAIC 2013.
[8] M. Caminada. On the issue of reinstatement in argumentation. In Logics in Artificial Intelligence.

Springer Berlin Heidelberg, 2006.
[9] S. Modgil and M. Caminada. Proof theories and algorithms for abstract argumentation frameworks. In

Argumentation in Artificial Intelligence. Springer US, 2009.
[10] T. Wakaki and K. Nitta. Computing argumentation semantics in answer set programming. In New

Frontiers in Artificial Intelligence. Springer Berlin Heidelberg, 2009.

